- Docente titolare: Andrea Arnaldo Maria Piccinini
The course is meant to be an introduction to biotechnologically relevant techniques that requires a particular knowledge of their physical, computational and technological basis.
The course aims at giving describing the principles and the potentials of a selection of advanced optical microscopy techniques and of nanotechnologies. The course also aims at providing a basic understanding and training of quantitative image analysis.
The topics included in the course can be divided into three main sections:
ADVANCED OPTICAL MICROSCOPY
Introduction on the resolution of optical microscopes
Effects of the finite resolution on images
Introduction to confocal microscopy
Optical processes and techniques that can overcome the resolution limit, such as: non linear microscopy, STED,TIRF,PALM, SNOM.
Introduction to time resolved fluorescence and FLIM microscopy
NANOTCHNOLOGY
Aims and uses of nanoparticles in biomedicine.
Nanoparticles: quantum dots, nanomag, metallic nanoparticles, polymer particles, liposomes.
General concepts, stability, bioconiugation, cell internalization.
Optical tweezers for micro-manipulation.
Atomic force microscopy.
Later-free optical biosensors. Introduction to SPR-based techniques.
Micromechanical devices.
QUANTITATIVE ANALYSIS OF IMAGES
Introduction to the fundamentals of computer graphics aimed to the understanding and elaboroation of the informations contained in images.
Colorimetry: color spectrum, Gamut, chromatic coordinates, gamma value of displays, RGB, CMYK.
Digital image types: (es. BMP,TIF,GIF,JPG)
Lossy and lossless compression
ImageJ interface introduction, Image visualization (Look Up Tables, Brightness and Contrast), Pixel Statistics.
Processing examples (FFT and filtering)
An example of a quantitative analysis: electrophoretic gel
Object recognition I : image segmentation and particle analysis
Multidimensional images from color channels to image stacks
Video processing
Best Fitting procedures. Fitting a model into quantitative data extracted from a digital image. Extraction of experimental parameters and confidence levels.
Object Recognition II: Training a convolutional Netural Networks for the automatic recognition of objects in image. Image annotation.
- Docente titolare: Tommaso Giovanni Bellini
- Docente titolare: Giovanni Nava
- Docente titolare: Luca Marelli
- Docente titolare: Giuseppe Testa
- Docente titolare: Elena Battaglioli
- Docente titolare: Palma Finelli
- Docente titolare: Daniele Ghezzi
- Docente titolare: Paola Vanda Riva
- Docente titolare: Francesco Sebastiano Rusconi
- Docente titolare: Marco Venturin
- Docente titolare: Paolo Ciana
- Docente titolare: Diego Maria Michele Fornasari
- Docente titolare: Maura Francolini
- Docente titolare: Federica Marchesi
- Docente titolare: Benedetta Savino
- Docente titolare: Lucia Sfondrini
- Docente titolare: Eleonora Tobaldini
- Docente titolare: Luca Vittorio Carlo Valenti
- Docente titolare: Paola Carla Giussani
- Docente titolare: alessandro ennio giuseppe prinetti
- Docente titolare: Paola Viani